metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(amino{[iminio(morpholino)methyl]amino}iminium) bis(amino{[imino-(morpholino)methyl]amino}iminium) tetracosaoxidotellurohexamolybdate(6-) tetrahydrate

Feng Wang, Shu-Xia Liu,* Chun-Ling Wang, Rui-Ge Cao and Jian-Fang Cao

Key Laboratory of Polyoxometallate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: liusx@nenu.edu.cn

Received 1 May 2007; accepted 13 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.025; wR factor = 0.056; data-to-parameter ratio = 13.0.

The title compound, $(H_2ABOB)_2(HABOB)_2[Te^{VI}Mo^{VI}_6O_{24}]$ -4H₂O, consists of an Anderson-type heteropolyanion, $[Te^{VI}Mo^{VI}_6O_{24}]^{6-}$, two monoprotonated ABOB cations, two diprotonated ABOB cations and four water molecules (ABOB = *N*-amidino-4-morpholincarboxamidine). The heteropolyanion $[Te^{VI}Mo^{VI}_6O_{24}]^{6-}$ is located on an inversion center. Electrostatic forces and hydrogen-bonding interactions among the $[Te^{VI}Mo^{VI}_6O_{24}]^{6-}$ anions, the water molecules and the ABOB cations result in a three-dimensional supramolecular structure.

Related literature

For similar structures, see: Chen *et al.* (2007); Li *et al.* (2005); Liu *et al.* (2004); Drewes *et al.* (2004); Gao *et al.* (2006). For the synthesis of the $[Te^{VI}Mo^{VI}{}_{6}O_{24}]^{6-}$ polyanion, see Saito (1994).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_6H_{15}N_5O})_2({\rm C_6H_{14}N_5O})_2-\\ [{\rm TeMo_6O_{24}}].4{\rm H_2O}\\ M_r = 1850.21\\ {\rm Monoclinic}, \ P2_1/n\\ a = 15.722 \ (3) \ {\rm \AA} \end{array}$

b = 9.2364 (18) Å c = 19.256 (4) Å $\beta = 94.67 (3)^{\circ}$ $V = 2787.0 (10) \text{ Å}^{3}$ Z = 2

Mo	Κα	radiation	
$\mu =$	1.9	3 mm^{-1}	

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\rm min} = 0.643, T_{\rm max} = 0.657$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.056$ S = 1.094883 reflections T = 298 (2) K $0.24 \times 0.24 \times 0.22$ mm

20771 measured reflections 4883 independent reflections 4465 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$

377 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.86 \text{ e } \text{\AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H6···O7	0.90	2.20	2.916 (3)	137
$N1 - H5 \cdots O2$	0.90	2.04	2.769 (3)	138
$N2-H8\cdots O1^{i}$	0.90	1.95	2.840 (3)	172
$N2-H7\cdots O1W$	0.90	2.01	2.877 (3)	162
$N3 - H9 \cdot \cdot \cdot O10^{ii}$	0.90	1.69	2.571 (3)	165
N4−H11···O11 ⁱⁱⁱ	0.90	2.18	2.965 (3)	146
$N4 - H10 \cdot \cdot \cdot O2W^{i}$	0.90	1.86	2.762 (4)	177
N9−H17···O14 ^{iv}	0.90	2.18	3.067 (4)	167
N7-H15···O9	0.90	2.14	2.925 (4)	146
$N7 - H14 \cdots O7^{v}$	0.90	2.05	2.921 (3)	164
$N6-H13\cdots O8^{v}$	0.90	2.06	2.806 (4)	140
$O1W - H1 \cdot \cdot \cdot O3^{vi}$	0.85	1.97	2.810 (3)	172
$O1W - H2 \cdot \cdot \cdot O12$	0.85	2.61	3.087 (3)	117
$O1W - H2 \cdot \cdot \cdot O14^{iv}$	0.85	2.25	3.027 (3)	152
$O2W - H3 \cdot \cdot \cdot O5^{i}$	0.85	2.06	2.860 (3)	156
$O2W - H4 \cdots O1W$	0.85	1.98	2.829 (4)	176

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y - 1, z; (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z - \frac{1}{2}$; (iv) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) -x + 2, -y + 2, -z.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL* (Bruker, 2001).

This work was supported by the National Science Foundation of China (grant No. 20571014), the Scientific Research Foundation for Returned Overseas Chinese Scholars and the Ministry of Education.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2263).

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H. Y., Liu, S. X., Xie, L. H., Ren, Y. H. & Zhang, C. D. (2007). Chem. Lett. 36, 746–747.
- Drewes, D., Limanski, E. & Krebs, B. (2004). J. Chem. Soc. Dalton Trans. pp. 2087–2091.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gao, B., Liu, S. X., Xie, L. H., Yu, M., Zhang, C. D., Sun, C. Y. & Cheng, H. Y. (2006). J. Solid State Chem. 179, 1681–1689.

- Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Li, D. H., Liu, S. X., Sun, C. Y., Xie, L. H., Wang, E. B., Hu, N. H. & Jia, H. Q.
- (2005). Inorg. Chem. Commun. 8, 433–436.
 Liu, S. X., Zhai, H. J., Peng, J., Li, D. H., Dai, Z. M., Wang, E. B., Hu, N. H. & Jia, H. Q. (2004). Chem. J. Chin. Univ. 25, 997–1001.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Saito, A. (1994). Inorg. Chim. Acta, 217, 93-99.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). *Acta Cryst. 144*, 467–475. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1708-m1709 [doi:10.1107/S1600536807023525]

Bis(amino{[iminio(morpholino)methyl]amino}iminium) bis(amino{[imino(morpholino)methyl]amino}iminium) tetrahydrate tetrahydrate

F. Wang, S.-X. Liu, C.-L. Wang, R.-G. Cao and J.-F. Cao

Comment

N-Amidino-4-morpholincarboxamidine (ABOB) is an effective broad-spectrum antiviral medicine to influenza, chickenpox and measles. In our chemical studies (Chen *et al.*, 2007; Li *et al.*, 2005; Liu *et al.*, 2004), we found it is a versatile ligand capable of interacting with different types of polyanions. As a part of our ongoing work, we have investigated the reaction of ABOB and the Anderson type $[Te^{VI}Mo^{VI}_6O_{24}]^{6-}$ polyanion to give a compound formulated as $(H_2ABOB)_2(HABOB)_2[Te^{VI}Mo^{VI}_6O_{24}]^{\cdot}4H_2O$ (I).

The compound consists of $[Te^{VI}Mo^{VI}{}_{6}O_{24}]^{6-}$, protonated ABOB, and lattice water molecules. The three-dimensional supramolecular structure is formed by electrostatic forces and hydrogen bonding interactions among these components (Fig. 1). The $[Te^{VI}Mo^{VI}{}_{6}O_{24}]^{6-}$ anion lies on an inversion center and is close to having $D_{3 d}$ symmetry. It is made up of six MoO₆ octahedra surrounding one TeO₆ octahedron by entirely edge-shared contacts; bond lengths and angles are in accordance with those of reported examples (Drewes *et al.*, 2004; Gao *et al.*, 2006) The diprotonated ABOB acquires two protons with its two imine groups (N2, N4). The monoprotonated ABOB acquires two protons with two imine groups (N6, N9) as well but loses one proton on the third imine groups (N8). Electrostatic forces and hydrogen bonding interactions result in a three-dimensional supramolecular structure (Figure 2, Figure 3). The hydrogen-bond donors are the protonated imines groups and water molecules whereas the acceptors are mostly the O atoms of the Anderson type polyanion.

Experimental

A mixture of $Na_6[Te^{VI}Mo^{VI}_6O_{24}]^{6-22H_2O}$ (0.32 g, 0.2 mmol) (Saito, 1994)) and ABOB (0.21 g, 1.2 mmol) in water (30 ml) treated with dilute hydrochloric acid to pH 5–6. The solution was stirred for 2 h. It was then filtered; the filtrate was set aside for the formation of crystals after two weeks; yield 65% based on Te.

Refinement

The H atoms on water molecules, amine, and protonated imine groups were located in a difference Fourier map, and refined with distance restraints of with O–H = 0.85 Å, N–H = 0.90 Å and $U_{iso}(H) = 1.2 U_{eq}(O,N)$. Those on C atoms are placed in calculated positions and refined in the riding model approximation with C–H = 0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. Figure 1. *ORTEP* view of (I) with displacement ellipsoids drawn at 50% probability level. [Symmetry code: (i) 2 - x, 2 - y, -z.]

Fig. 2. Figure 2. Hydrogen bonds (yellow dotted line) around a polyanion which is represented as polyhedra.

Fig. 3. Figure 3. The crystal packing in a unit cell, with hydrogen bonds showed as yellow dotted line and polyanions represented as polyhedra.

Bis(amino{[iminio(morpholino)methyl]amino}iminium) bis(amino{[imino(morpholino)methyl]amino}iminium) tetracosaoxidotellurohexamolybdate(6-) tetrahydrate

Crystal data

 $(C_6H_{15}N_5O)_2(C_6H_{14}N_5O)_2[TeMo_6O_{24}]_4H_2O$ $F_{000} = 1820$ $M_r = 1850.21$ $D_{\rm x} = 2.205 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ \AA}$ Hall symbol: -P 2yn Cell parameters from 875 reflections $\theta = 3.1 - 25.0^{\circ}$ a = 15.722 (3) Å b = 9.2364 (18) Å $\mu = 1.93 \text{ mm}^{-1}$ c = 19.256 (4) Å T = 298 (2) K $\beta = 94.67 (3)^{\circ}$ Block, white $V = 2787.0 (10) \text{ Å}^3$ $0.24 \times 0.24 \times 0.22 \text{ mm}$ Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer	4883 independent reflections
Radiation source: fine-focus sealed tube	4465 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$

Detector resolution: 0 pixels mm ⁻¹	$\theta_{max} = 25.0^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -10 \rightarrow 10$
$T_{\min} = 0.643, \ T_{\max} = 0.657$	$l = -22 \rightarrow 22$
20771 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.025$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0189P)^{2} + 3.249P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.056$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$
4883 reflections	$\Delta \rho_{min} = -0.86 \text{ e } \text{\AA}^{-3}$
377 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.00488 (13)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Te1	1.0000	1.0000	0.0000	0.01336 (7)
Mol	0.840705 (14)	0.97463 (2)	-0.121498 (12)	0.01725 (8)
Mo2	0.962462 (15)	1.03579 (3)	0.163987 (12)	0.01902 (8)
Mo3	0.804183 (14)	1.00883 (2)	0.045455 (12)	0.01829 (8)
01	1.06718 (11)	0.87503 (19)	-0.05424 (9)	0.0177 (4)
O2	0.89805 (11)	0.88611 (19)	-0.01551 (9)	0.0166 (4)
03	0.96442 (11)	1.09343 (19)	-0.08720 (9)	0.0176 (4)
O4	0.91282 (14)	1.1756 (2)	0.20215 (11)	0.0333 (5)
05	0.92935 (12)	0.8616 (2)	-0.15719 (9)	0.0212 (4)

O6	0.75632 (13)	1.1543 (2)	0.08024 (11)	0.0330 (5)
07	0.76252 (12)	0.8424 (2)	-0.12693 (11)	0.0276 (5)
08	0.72660 (13)	0.8813 (2)	0.02944 (11)	0.0323 (5)
09	0.99343 (13)	0.9194 (2)	0.22975 (10)	0.0296 (5)
O10	0.79802 (11)	1.09461 (19)	-0.04971 (9)	0.0192 (4)
011	0.81680 (13)	1.0896 (2)	-0.18973 (10)	0.0293 (5)
012	0.86502 (12)	0.9258 (2)	0.12556 (9)	0.0219 (4)
O13	0.51701 (15)	0.1569 (3)	-0.10142 (15)	0.0582 (8)
O14	0.70371 (14)	1.0881 (2)	0.31912 (13)	0.0397 (6)
O1W	0.96255 (14)	0.6375 (2)	0.11550 (12)	0.0370 (5)
H1	0.9889	0.7141	0.1055	0.044*
H2	0.9140	0.6556	0.1301	0.044*
O2W	1.07989 (17)	0.4426 (3)	0.18435 (15)	0.0540 (7)
Н3	1.0676	0.3607	0.1661	0.065*
H4	1.0434	0.4979	0.1629	0.065*
N1	0.83492 (18)	0.6090 (3)	-0.03895 (14)	0.0344 (6)
Н5	0.8712	0.6705	-0.0155	0.041*
H6	0.7979	0.6376	-0.0744	0.041*
N2	0.90623 (15)	0.4192 (3)	0.01555 (13)	0.0282 (6)
H7	0.9353	0.4823	0.0441	0.034*
H8	0.9136	0.3237	0.0232	0.034*
N3	0.79856 (16)	0.3705 (3)	-0.06762(13)	0.0277 (6)
H9	0.8008	0.2776	-0.0534	0.033*
N4	0.75224 (18)	0.4803 (3)	-0.17227(14)	0.0354 (6)
H10	0.8071	0.5025	-0.1774	0.042*
H11	0.7113	0.5017	-0.2061	0.042*
N5	0.65933 (16)	0.3408(3)	-0.11197(13)	0.0300(6)
N6	1 0938 (2)	0.7734(4)	0 45693 (18)	0.0500(0) 0.0577(9)
H12	1.0669	0.7843	0.4961	0.069*
H13	1 1469	0.7363	0.4607	0.069*
N7	1.08581 (17)	0.7464 (3)	0.33860 (16)	0.0453 (8)
H1/	1.1380	0.7464 (5)	0.33300 (10)	0.0433(0)
H15	1.1580	0.7675	0.2950	0.054*
N9	0.06048 (16)	0.7075	0.2950 0.20610 (14)	0.034
NO	0.90948(10) 0.00242(17)	0.6341(3)	0.39010(14) 0.21506(16)	0.0338(0) 0.0418(7)
114	0.90343 (17)	0.0720 (5)	0.31300 (10)	0.0418(7)
П10 1117	0.9432	0.6031	0.3279	0.050*
П17 N10	0.8037	0.0373	0.2780	0.030°
N10	0.64524(15)	0.8930 (3)	0.55528(15)	0.0205(3)
	0.5878(2)	0.1522 (4)	-0.05055 (19)	0.0438 (9)
HIA	0.6283	0.0799	-0.0637	0.053*
HIB	0.5684	0.1246	-0.0058	0.053*
C2	0.54/5 (2)	0.1889 (5)	-0.16/2 (2)	0.0537(10)
H2A	0.4998	0.18/9	-0.2026	0.064*
H2B	0.5872	0.1140	-0.1788	0.064*
C3	0.5913 (2)	0.3336 (4)	-0.16842 (18)	0.0416 (8)
H3A	0.6151	0.3470	-0.2129	0.050*
H3B	0.5502	0.4103	-0.1629	0.050*
C4	0.6308 (2)	0.2974 (4)	-0.04428 (17)	0.0381 (8)
H4A	0.5912	0.3689	-0.0288	0.046*

H4B	0.6794	0.2925	-0.0099	0.046*
C5	0.7344 (2)	0.4006 (3)	-0.11897 (15)	0.0263 (6)
C6	0.84770 (18)	0.4686 (3)	-0.03086 (15)	0.0228 (6)
C7	0.7724 (2)	1.1139 (4)	0.3706 (2)	0.0452 (9)
H7A	0.7575	1.0754	0.4149	0.054*
H7B	0.7806	1.2175	0.3761	0.054*
C8	0.6910 (2)	0.9357 (3)	0.31187 (19)	0.0371 (8)
H8A	0.6423	0.9178	0.2788	0.045*
H8B	0.6784	0.8954	0.3564	0.045*
C9	0.76780 (19)	0.8614 (4)	0.28752 (17)	0.0320 (7)
H9A	0.7582	0.7577	0.2858	0.038*
H9B	0.7774	0.8942	0.2409	0.038*
C10	0.8540 (2)	1.0472 (4)	0.35268 (18)	0.0367 (8)
H10A	0.8746	1.0980	0.3133	0.044*
H10B	0.8964	1.0573	0.3919	0.044*
C11	0.90742 (19)	0.8001 (3)	0.34730 (16)	0.0288 (7)
C12	1.0479 (2)	0.7821 (4)	0.39541 (19)	0.0372 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	0.01484 (13)	0.01183 (12)	0.01295 (13)	-0.00084 (8)	-0.00163 (9)	0.00035 (9)
Mo1	0.01854 (13)	0.01554 (13)	0.01677 (13)	-0.00164 (9)	-0.00401 (9)	0.00015 (9)
Mo2	0.02178 (14)	0.02072 (14)	0.01437 (13)	-0.00030 (9)	0.00025 (9)	-0.00023 (9)
Mo3	0.01674 (13)	0.01865 (13)	0.01923 (13)	-0.00111 (9)	0.00005 (9)	0.00082 (9)
01	0.0194 (9)	0.0156 (9)	0.0179 (9)	0.0014 (7)	0.0009 (7)	-0.0018 (8)
O2	0.0170 (9)	0.0144 (9)	0.0179 (9)	-0.0031 (7)	-0.0019 (7)	0.0007 (7)
O3	0.0196 (9)	0.0168 (9)	0.0157 (9)	-0.0010 (7)	-0.0036 (7)	0.0028 (8)
O4	0.0345 (12)	0.0342 (12)	0.0315 (11)	0.0043 (9)	0.0054 (9)	-0.0070 (10)
O5	0.0244 (10)	0.0188 (9)	0.0201 (9)	-0.0027 (8)	-0.0005 (8)	-0.0035 (8)
O6	0.0318 (12)	0.0371 (12)	0.0298 (11)	0.0105 (9)	0.0017 (9)	-0.0031 (10)
07	0.0233 (10)	0.0250 (10)	0.0334 (11)	-0.0050 (8)	-0.0051 (9)	-0.0030 (9)
08	0.0286 (12)	0.0341 (12)	0.0329 (11)	-0.0120 (9)	-0.0046 (9)	0.0071 (10)
09	0.0335 (12)	0.0330 (12)	0.0216 (10)	-0.0047 (9)	-0.0028 (9)	0.0083 (9)
O10	0.0194 (10)	0.0149 (9)	0.0226 (9)	0.0018 (7)	-0.0021 (7)	0.0017 (8)
011	0.0361 (12)	0.0257 (11)	0.0245 (11)	0.0008 (9)	-0.0077 (9)	0.0050 (9)
012	0.0221 (10)	0.0234 (10)	0.0202 (10)	-0.0035 (8)	0.0014 (8)	0.0042 (8)
O13	0.0313 (14)	0.076 (2)	0.0657 (18)	-0.0082 (13)	-0.0048 (12)	0.0279 (16)
O14	0.0301 (12)	0.0254 (11)	0.0622 (16)	0.0041 (9)	-0.0047 (11)	0.0019 (11)
O1W	0.0405 (13)	0.0229 (11)	0.0482 (14)	-0.0051 (9)	0.0074 (11)	-0.0027 (11)
O2W	0.0557 (17)	0.0388 (14)	0.0658 (18)	-0.0077 (12)	-0.0047 (14)	0.0036 (14)
N1	0.0478 (17)	0.0171 (12)	0.0358 (15)	-0.0010 (11)	-0.0125 (12)	0.0008 (11)
N2	0.0320 (14)	0.0203 (12)	0.0307 (14)	-0.0021 (10)	-0.0074 (11)	0.0000 (11)
N3	0.0379 (15)	0.0123 (11)	0.0306 (13)	-0.0008 (10)	-0.0105 (11)	0.0038 (10)
N4	0.0389 (16)	0.0341 (15)	0.0312 (15)	-0.0047 (12)	-0.0085 (12)	0.0095 (12)
N5	0.0314 (14)	0.0328 (14)	0.0249 (13)	0.0016 (11)	-0.0042 (11)	0.0049 (11)
N6	0.0385 (18)	0.078 (2)	0.053 (2)	0.0157 (17)	-0.0173 (15)	0.0055 (19)
N7	0.0240 (15)	0.060 (2)	0.0519 (19)	0.0129 (13)	0.0017 (13)	0.0115 (16)

N8	0.0272 (14)	0.0463 (17)	0.0325 (14)	0.0086 (12)	-0.0049 (11)	-0.0024 (13)
N9	0.0308 (15)	0.0335 (15)	0.0598 (19)	0.0085 (12)	-0.0045 (14)	-0.0079 (14)
N10	0.0199 (12)	0.0285 (13)	0.0299 (13)	0.0014 (10)	-0.0011 (10)	-0.0025 (11)
C1	0.0363 (19)	0.052 (2)	0.043 (2)	0.0019 (16)	0.0027 (16)	0.0171 (18)
C2	0.041 (2)	0.068 (3)	0.049 (2)	-0.0111 (19)	-0.0164 (17)	0.012 (2)
C3	0.0325 (18)	0.055 (2)	0.0356 (18)	0.0014 (16)	-0.0110 (14)	0.0133 (17)
C4	0.0416 (19)	0.046 (2)	0.0274 (17)	0.0097 (15)	0.0064 (14)	0.0049 (16)
C5	0.0373 (17)	0.0163 (14)	0.0239 (15)	0.0037 (12)	-0.0062 (12)	0.0000 (12)
C6	0.0293 (15)	0.0156 (13)	0.0237 (14)	-0.0022 (11)	0.0028 (12)	0.0002 (12)
C7	0.044 (2)	0.0358 (19)	0.056 (2)	0.0023 (16)	0.0007 (17)	-0.0128 (18)
C8	0.0277 (17)	0.0307 (17)	0.052 (2)	0.0008 (13)	-0.0016 (15)	0.0033 (16)
C9	0.0257 (16)	0.0342 (17)	0.0352 (17)	-0.0002 (13)	-0.0037 (13)	-0.0047 (15)
C10	0.0341 (18)	0.0343 (18)	0.0407 (19)	-0.0018 (14)	-0.0024 (14)	-0.0083 (15)
C11	0.0226 (15)	0.0345 (17)	0.0295 (16)	0.0014 (12)	0.0040 (12)	0.0045 (14)
C12	0.0279 (17)	0.0330 (17)	0.049 (2)	0.0014 (14)	-0.0065 (15)	0.0101 (16)

Geometric parameters (Å, °)

Te1—O2	1.9202 (17)	N3—C5	1.382 (4)
Te1—O2 ⁱ	1.9202 (17)	N3—H9	0.9000
Te1—O1	1.9283 (17)	N4—C5	1.312 (4)
Te1—O1 ⁱ	1.9283 (17)	N4—H10	0.8998
Te1—O3	1.9298 (17)	N4—H11	0.9000
Te1—O3 ⁱ	1.9298 (17)	N5—C5	1.320 (4)
Mo1—O11	1.7075 (19)	N5—C3	1.464 (4)
Mo1—O7	1.7298 (19)	N5—C4	1.468 (4)
Mo1—O5	1.9131 (19)	N6—C12	1.339 (4)
Mo1—O10	1.9339 (18)	N6—H12	0.9001
Mo1—O3	2.2834 (18)	N6—H13	0.9000
Mo1—O2	2.3123 (18)	N7—C12	1.329 (4)
Mo2—O9	1.702 (2)	N7—H14	0.9001
Mo2—O4	1.706 (2)	N7—H15	0.9001
Mo2	1.9343 (19)	N8—C12	1.324 (4)
Mo2—O5 ⁱ	1.9606 (19)	N8—C11	1.336 (4)
Mo2—O1 ⁱ	2.2806 (18)	N9—C11	1.335 (4)
Mo2—O3 ⁱ	2.2823 (18)	N9—H16	0.8999
Mo3—O6	1.704 (2)	N9—H17	0.9000
Mo3—O8	1.706 (2)	N10-C11	1.334 (4)
Mo3—O12	1.9084 (19)	N10-C10	1.464 (4)
Mo3—O10	1.9916 (18)	N10—C9	1.471 (4)
Mo3—O2	2.2634 (18)	C1—C4	1.503 (5)
Mo3—O1 ⁱ	2.2835 (18)	C1—H1A	0.9700
O1—Mo2 ⁱ	2.2806 (18)	C1—H1B	0.9700
O1—Mo3 ⁱ	2.2835 (18)	C2—C3	1.504 (5)
O3—Mo2 ⁱ	2.2823 (18)	C2—H2A	0.9700
O5—Mo2 ⁱ	1.9606 (18)	C2—H2B	0.9700
O13—C2	1.422 (5)	С3—НЗА	0.9700

O13—C1	1.422 (4)	С3—Н3В	0.9700
O14—C7	1.426 (4)	C4—H4A	0.9700
O14—C8	1.427 (4)	C4—H4B	0.9700
O1W—H1	0.8500	C7—C10	1.488 (5)
O1W—H2	0.8500	С7—Н7А	0.9700
O2W—H3	0.8499	С7—Н7В	0.9700
O2W—H4	0.8500	C8—C9	1.497 (4)
N1—C6	1.319 (4)	C8—H8A	0.9700
N1—H5	0.8999	C8—H8B	0.9700
N1—H6	0.9001	С9—Н9А	0.9700
N2—C6	1.311 (4)	С9—Н9В	0.9700
N2—H7	0.9001	C10—H10A	0.9700
N2—H8	0.9000	C10—H10B	0.9700
N3—C6	1.353 (4)		
O2—Te1—O2 ⁱ	180.0	C6—N3—C5	126.3 (2)
O2—Te1—O1	94.30 (8)	C6—N3—H9	118.2
O2 ⁱ —Te1—O1	85.70 (8)	C5—N3—H9	114.6
O2—Te1—O1 ⁱ	85.70 (8)	C5—N4—H10	118.8
O2 ⁱ —Te1—O1 ⁱ	94.30 (8)	C5—N4—H11	120.2
O1—Te1—O1 ⁱ	180.00 (8)	H10—N4—H11	120.5
O2—Te1—O3	86.01 (8)	C5—N5—C3	123.3 (3)
O2 ⁱ —Te1—O3	93.99 (8)	C5—N5—C4	123.1 (3)
01—Te1—O3	85.94 (8)	C3—N5—C4	112.9 (3)
O1 ⁱ —Te1—O3	94.06 (8)	C12—N6—H12	118.6
O2—Te1—O3 ⁱ	93.99 (8)	C12—N6—H13	121.6
O2 ⁱ —Te1—O3 ⁱ	86.01 (8)	H12—N6—H13	118.1
O1—Te1—O3 ⁱ	94.06 (8)	C12—N7—H14	120.1
O1 ⁱ —Te1—O3 ⁱ	85.94 (8)	C12—N7—H15	123.6
O3—Te1—O3 ⁱ	180.00 (10)	H14—N7—H15	116.1
O11—Mo1—O7	106.37 (10)	C12—N8—C11	122.3 (3)
O11—Mo1—O5	100.61 (9)	C11—N9—H16	118.4
O7—Mo1—O5	97.36 (9)	C11—N9—H17	120.3
O11—Mo1—O10	97.24 (9)	H16—N9—H17	120.9
O7—Mo1—O10	99.29 (9)	C11—N10—C10	121.1 (3)
O5—Mo1—O10	151.01 (8)	C11—N10—C9	122.5 (3)
O11—Mo1—O3	93.01 (9)	C10—N10—C9	114.3 (2)
O7—Mo1—O3	160.24 (8)	O13—C1—C4	110.4 (3)
O5—Mo1—O3	74.79 (7)	O13—C1—H1A	109.6
O10—Mo1—O3	81.66 (7)	C4—C1—H1A	109.6
O11—Mo1—O2	160.86 (8)	O13—C1—H1B	109.6
O7—Mo1—O2	91.60 (8)	C4—C1—H1B	109.6
O5—Mo1—O2	83.17 (7)	H1A—C1—H1B	108.1
O10—Mo1—O2	72.83 (7)	O13—C2—C3	112.7 (3)
O3—Mo1—O2	69.69 (6)	O13—C2—H2A	109.1
09—Mo2—O4	105.72 (10)	C3—C2—H2A	109.1
O9—Mo2—O12	97.04 (9)	O13—C2—H2B	109.1

O4—Mo2—O12	100.74 (9)	С3—С2—Н2В	109.1
O9—Mo2—O5 ⁱ	99.08 (9)	H2A—C2—H2B	107.8
O4—Mo2—O5 ⁱ	95.33 (9)	N5—C3—C2	109.7 (3)
O12—Mo2—O5 ⁱ	153.20 (8)	N5—C3—H3A	109.7
O9—Mo2—O1 ⁱ	160.41 (8)	С2—С3—НЗА	109.7
O4—Mo2—O1 ⁱ	93.42 (9)	N5—C3—H3B	109.7
O12—Mo2—O1 ⁱ	74.90 (7)	С2—С3—Н3В	109.7
$O5^{i}$ —Mo2— $O1^{i}$	82.91 (7)	НЗА—СЗ—НЗВ	108.2
O9—Mo2—O3 ⁱ	91.31 (9)	N5—C4—C1	109.9 (3)
O4—Mo2—O3 ⁱ	161.30 (9)	N5—C4—H4A	109.7
$012 - M_02 - 03^i$	84.42 (7)	C1—C4—H4A	109.7
05^{i} Mo2 03^{i}	73.98 (7)	N5—C4—H4B	109.7
01^{i} Mo2 03^{i}	70.38 (6)	C1—C4—H4B	109.7
O6—Mo3—O8	106.47 (11)	H4A—C4—H4B	108.2
$06 - M_0 3 - 012$	101 97 (9)	N4	124 4 (3)
$08 - M_0 3 - 012$	99 94 (9)	N4	118 8 (3)
$06 - M_0 3 - 010$	93 33 (9)	N5_C5_N3	116.0(3)
$08 - M_0 3 - 010$	97.35 (9)	N2_C6_N1	1210(3)
012 Mo3 - 010	152 52 (8)	N2 C6 N3	121.0(3) 117.5(3)
$06-M_{0}3-02$	157.88 (0)	N1_C6_N3	117.5(3)
00 - M03 - 02	137.88(0)	014 C7 C10	121.4(3)
0.00000000000000000000000000000000000	92.71 (9) 95.01 (7)	014 - C7 - H7A	112.8 (5)
012 - M03 - 02	72.96(7)	$C_{14} = C_{14} = C$	109.0
$06 - M_0 - 01^{i}$	90 99 (9)	014—C7—H7B	109.0
$08 \text{ Me}^2 \text{ Ol}^1$	162 53 (9)	C10-C7-H7B	109.0
$012 M_{2}^{2} 01^{i}$	75 30 (7)	H7AH7B	107.8
012 - M03 - 01	(7)	014 C8 C9	111.0 (3)
010—Mo3—01 ⁻	01.02 (7)		111.9 (3)
O2—Mo3—O1 ¹	/0.29 (6)	014—C8—H8A	109.2
$Te1-O1-Mo2^{1}$	101.89 (8)	С9—С8—Н8А	109.2
$Te1-O1-Mo3^1$	101.51 (8)	O14—C8—H8B	109.2
Mo2 ⁱ —O1—Mo3 ⁱ	90.68 (7)	С9—С8—Н8В	109.2
Te1—O2—Mo3	102.49 (8)	H8A—C8—H8B	107.9
Te1—O2—Mo1	101.78 (8)	N10—C9—C8	110.0 (3)
Mo3—O2—Mo1	93.26 (7)	N10—C9—H9A	109.7
Te1—O3—Mo2 ⁱ	101.78 (8)	С8—С9—Н9А	109.7
Te1—O3—Mo1	102.51 (8)	N10—C9—H9B	109.7
$Mo2^{i}$ —O3—Mo1	91.35 (6)	С8—С9—Н9В	109.7
$M_01 - 05 - M_02^i$	114.94 (9)	Н9А—С9—Н9В	108.2
Mo1Mo3	115 85 (9)	N10_C10_C7	111.7 (3)
$M_{0}^{2} = 012 = M_{0}^{2}$	115.31 (0)	N10 - C10 - H10A	109.3
$C_{2} = 012 = 012$	108.6 (3)	C7 - C10 - H10A	109.5
$C_2 = 013 = C_1$	100.0(3)	N10 C10 H10D	109.5
$C_1 = 014 = C_0$	109.0 (2)		109.5
$\Pi - 01W - \Pi 2$	112.3		109.5
н <i>э</i> —02w—Н4	102.2	H10A—C10—H10B	107.9

C6—N1—H5	118.5	N10—C11—N9	119.1 (3)
C6—N1—H6	117.5	N10-C11-N8	118.0 (3)
H5—N1—H6	122.6	N9—C11—N8	122.6 (3)
C6—N2—H7	119.0	N8—C12—N7	125.3 (3)
С6—N2—H8	121.8	N8—C12—N6	116.6 (3)
H7—N2—H8	118.8	N7—C12—N6	117.9 (3)
O2—Te1—O1—Mo2 ⁱ	86.08 (8)	O10—Mo1—O5—Mo2 ⁱ	-56.2 (2)
O2 ⁱ —Te1—O1—Mo2 ⁱ	-93.92 (8)	O3—Mo1—O5—Mo2 ⁱ	-19.37 (8)
O3—Te1—O1—Mo2 ⁱ	0.40 (7)	O2—Mo1—O5—Mo2 ⁱ	-90.12 (10)
O3 ⁱ —Te1—O1—Mo2 ⁱ	-179.60 (7)	O11—Mo1—O10—Mo3	177.24 (10)
O2—Te1—O1—Mo3 ⁱ	179.25 (7)	O7—Mo1—O10—Mo3	69.26 (11)
O2 ⁱ —Te1—O1—Mo3 ⁱ	-0.75 (7)	O5-Mo1-O10-Mo3	-55.0 (2)
O3—Te1—O1—Mo3 ⁱ	93.57 (8)	O3—Mo1—O10—Mo3	-90.76 (10)
O3 ⁱ —Te1—O1—Mo3 ⁱ	-86.43 (8)	O2—Mo1—O10—Mo3	-19.54 (8)
O1-Te1-O2-Mo3	179.24 (7)	O6—Mo3—O10—Mo1	-177.72 (11)
O1 ⁱ —Te1—O2—Mo3	-0.76 (7)	O8—Mo3—O10—Mo1	-70.63 (12)
O3—Te1—O2—Mo3	-95.14 (8)	O12—Mo3—O10—Mo1	58.1 (2)
O3 ⁱ —Te1—O2—Mo3	84.86 (8)	O2—Mo3—O10—Mo1	19.96 (8)
O1—Te1—O2—Mo1	-84.69 (8)	O1 ⁱ —Mo3—O10—Mo1	91.76 (10)
O1 ⁱ —Te1—O2—Mo1	95.31 (8)	O6—Mo3—O12—Mo2	-70.74 (12)
O3—Te1—O2—Mo1	0.92 (7)	O8—Mo3—O12—Mo2	179.91 (11)
O3 ⁱ —Te1—O2—Mo1	-179.08 (7)	O10-Mo3-O12-Mo2	51.7 (2)
O6-Mo3-O2-Te1	34.3 (3)	O2—Mo3—O12—Mo2	88.02 (10)
O8-Mo3-O2-Te1	-175.22 (9)	O1 ⁱ —Mo3—O12—Mo2	17.12 (9)
O12-Mo3-O2-Te1	-75.47 (8)	O9—Mo2—O12—Mo3	-178.97 (11)
O10-Mo3-O2-Te1	87.92 (9)	O4—Mo2—O12—Mo3	73.50 (12)
O1 ⁱ —Mo3—O2—Te1	0.68 (6)	O5 ⁱ —Mo2—O12—Mo3	-52.3 (2)
O6—Mo3—O2—Mo1	-68.6 (2)	O1 ⁱ —Mo2—O12—Mo3	-17.17 (9)
O8—Mo3—O2—Mo1	81.95 (9)	O3 ⁱ —Mo2—O12—Mo3	-88.33 (10)
O12-Mo3-O2-Mo1	-178.30(7)	C2-013-C1-C4	62.7 (4)
O10-Mo3-O2-Mo1	-14.91 (6)	C1—O13—C2—C3	-61.4 (4)
O1 ⁱ —Mo3—O2—Mo1	-102.15 (7)	C5—N5—C3—C2	140.0 (3)
O11-Mo1-O2-Te1	-27.3 (3)	C4—N5—C3—C2	-49.8 (4)
O7-Mo1-O2-Te1	172.66 (9)	O13—C2—C3—N5	54.6 (4)
O5-Mo1-O2-Te1	75.44 (8)	C5—N5—C4—C1	-137.4 (3)
O10-Mo1-O2-Te1	-88.10 (9)	C3—N5—C4—C1	52.3 (4)
O3—Mo1—O2—Te1	-0.83 (6)	O13—C1—C4—N5	-58.5 (4)
O11—Mo1—O2—Mo3	76.2 (3)	C3—N5—C5—N4	11.6 (5)
O7—Mo1—O2—Mo3	-83.85 (8)	C4—N5—C5—N4	-157.6 (3)
O5—Mo1—O2—Mo3	178.93 (7)	C3—N5—C5—N3	-165.4 (3)
O10—Mo1—O2—Mo3	15.38 (6)	C4—N5—C5—N3	25.3 (4)
O3—Mo1—O2—Mo3	102.65 (7)	C6—N3—C5—N4	55.3 (4)
O2—Te1—O3—Mo2 ⁱ	-95.00 (8)	C6—N3—C5—N5	-127.5 (3)
O2 ⁱ —Te1—O3—Mo2 ⁱ	85.00 (8)	C5—N3—C6—N2	-179.4 (3)

O1—Te1—O3—Mo2 ⁱ	-0.40 (7)	C5—N3—C6—N1	3.6 (5)
O1 ⁱ —Te1—O3—Mo2 ⁱ	179.60 (7)	C8—O14—C7—C10	59.6 (4)
O2—Te1—O3—Mo1	-0.94 (7)	C7—O14—C8—C9	-62.0 (4)
O2 ⁱ —Te1—O3—Mo1	179.06 (7)	C11—N10—C9—C8	148.7 (3)
O1—Te1—O3—Mo1	93.67 (8)	C10—N10—C9—C8	-47.8 (4)
O1 ⁱ —Te1—O3—Mo1	-86.33 (8)	O14—C8—C9—N10	56.0 (4)
O11-Mo1-O3-Te1	172.42 (9)	C11—N10—C10—C7	-150.2 (3)
O7—Mo1—O3—Te1	-18.7 (3)	C9—N10—C10—C7	46.0 (4)
O5-Mo1-O3-Te1	-87.41 (9)	O14—C7—C10—N10	-51.7 (4)
O10-Mo1-O3-Te1	75.53 (8)	C10-N10-C11-N9	-162.6 (3)
O2—Mo1—O3—Te1	0.83 (6)	C9—N10—C11—N9	-0.1 (4)
O11—Mo1—O3—Mo2 ⁱ	-85.20 (9)	C10-N10-C11-N8	23.3 (4)
O7—Mo1—O3—Mo2 ⁱ	83.6 (2)	C9—N10—C11—N8	-174.2 (3)
O5—Mo1—O3—Mo2 ⁱ	14.98 (7)	C12-N8-C11-N10	-154.6 (3)
O10—Mo1—O3—Mo2 ⁱ	177.91 (7)	C12—N8—C11—N9	31.6 (5)
O2—Mo1—O3—Mo2 ⁱ	103.21 (7)	C11—N8—C12—N7	30.2 (5)
O11—Mo1—O5—Mo2 ⁱ	70.89 (11)	C11—N8—C12—N6	-154.1 (3)
O7—Mo1—O5—Mo2 ⁱ	179.14 (10)		
Symmetry codes: (i) $-x+2$, $-y+2$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H6…O7	0.90	2.20	2.916 (3)	137
N1—H5…O2	0.90	2.04	2.769 (3)	138
N2—H8···O1 ⁱⁱ	0.90	1.95	2.840 (3)	172
N2—H7···O1W	0.90	2.01	2.877 (3)	162
N3—H9…O10 ⁱⁱⁱ	0.90	1.69	2.571 (3)	165
N4—H11···O11 ^{iv}	0.90	2.18	2.965 (3)	146
N4—H10····O2W ⁱⁱ	0.90	1.86	2.762 (4)	177
N9—H17…O14 ^v	0.90	2.18	3.067 (4)	167
N7—H15…O9	0.90	2.14	2.925 (4)	146
N7—H14····O7 ^{vi}	0.90	2.05	2.921 (3)	164
N6—H13···O8 ^{vi}	0.90	2.06	2.806 (4)	140
O1W—H1···O3 ⁱ	0.85	1.97	2.810 (3)	172
O1W—H2…O12	0.85	2.61	3.087 (3)	117
$O1W$ — $H2$ ··· $O14^{v}$	0.85	2.25	3.027 (3)	152
O2W—H3···O5 ⁱⁱ	0.85	2.06	2.860 (3)	156
O2W—H4···O1W	0.85	1.98	2.829 (4)	176
Symmetry codes: (ii) - <i>x</i> +2, - <i>y</i> +1, - <i>z</i> ; (iii) <i>x</i> , <i>y</i> -1, <i>z</i> ; (iv) - <i>x</i> +3/2, <i>y</i> -1/2, - <i>z</i> -1/2; (v) - <i>x</i> +3/2, <i>y</i> -1/2, - <i>z</i> +1/2; (vi) <i>x</i> +1/2, - <i>y</i> +3/2, <i>z</i> +1/2; (i) - <i>x</i> +2, - <i>y</i> +2, - <i>z</i> .				

